Telegram Group & Telegram Channel
Какие метрики качества ранжирования вы знаете?

Такие метрики используются для оценки эффективности алгоритмов ранжирования, часто применяемых в рекомендательных системах.

🟠 Precision at K (p@K). Это метрика качества ранжирования для одного объекта. Измеряет долю релевантных элементов среди первых k элементов в ранжированном списке.
🟠 Mean average precision at K (map@K). Чаще всего мы имеем дело со множеством объектов, а не с одним, например с сотнями тысяч пользователей. Идея map@K заключается в том, чтобы сначала вычислить среднее precision at K для каждого объекта, а затем усреднить итог.
🟠 Normalized Discounted Cumulative Gain (NDCG). Здесь разберём поэтапно:
- Сначала рассмотрим один объект и k наиболее релевантных элементов. Это будет Cumulative gain at K (CG@K), метрика, которая использует простую идею: чем более релевантные элементы в этом топе, тем лучше.
- Далее введём Discounted cumulative gain at K (DCG@K). Это модификация CG@K, учитывающая порядок элементов в списке. Необходимо домножить показатель релевантности элемента на вес равный обратному логарифму номера позиции.
- В конце концов придём к normalized discounted cumulative gain at K (nDCG@K). Это нормализованная версия DCG@K. Данная метрика принимает значения в диапазоне от 0 до 1.
🟠 Mean Reciprocal Rank (MRR). Метрика усредняет обратные ранги первых правильно угаданных элементов по всем объектам.

Формулы можно найти в этой статье

#middle



tg-me.com/ds_interview_lib/121
Create:
Last Update:

Какие метрики качества ранжирования вы знаете?

Такие метрики используются для оценки эффективности алгоритмов ранжирования, часто применяемых в рекомендательных системах.

🟠 Precision at K (p@K). Это метрика качества ранжирования для одного объекта. Измеряет долю релевантных элементов среди первых k элементов в ранжированном списке.
🟠 Mean average precision at K (map@K). Чаще всего мы имеем дело со множеством объектов, а не с одним, например с сотнями тысяч пользователей. Идея map@K заключается в том, чтобы сначала вычислить среднее precision at K для каждого объекта, а затем усреднить итог.
🟠 Normalized Discounted Cumulative Gain (NDCG). Здесь разберём поэтапно:
- Сначала рассмотрим один объект и k наиболее релевантных элементов. Это будет Cumulative gain at K (CG@K), метрика, которая использует простую идею: чем более релевантные элементы в этом топе, тем лучше.
- Далее введём Discounted cumulative gain at K (DCG@K). Это модификация CG@K, учитывающая порядок элементов в списке. Необходимо домножить показатель релевантности элемента на вес равный обратному логарифму номера позиции.
- В конце концов придём к normalized discounted cumulative gain at K (nDCG@K). Это нормализованная версия DCG@K. Данная метрика принимает значения в диапазоне от 0 до 1.
🟠 Mean Reciprocal Rank (MRR). Метрика усредняет обратные ранги первых правильно угаданных элементов по всем объектам.

Формулы можно найти в этой статье

#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/121

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA